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Invariant group solutions of certain problems defining convective motions are indicated. 
A part of solutions of this type had been previonaly obtained by other methods. 

1. Plane motions of an incompressible viscous fluid resulting from a nonnniform 
heating of boundaries are considered. In a Cartesian system of coordinates such motions 
are defined by the system of Eqs [I] : 

lll& +- l?U g = nxx -+ nyy - Px 

“V&v + “Vu = & + n y - Pv + ?JJ (2.1) 

~0, + d, = 0 (e,, + gyyl, ux + vy = 0 

Here u and v are the velocity components along the%, and y-axis, p is the pressure, 
8 the temperature (or more accnrately, the divergence of these from certain standard 
values), X is the Grasshoff number, and o the Prandtl number. 

The system of Eqe. (1.11 allows for a group of transformations to be carried out for 
the determination of which it is sufficient to know the appropriate baeis operators [2] 

(1.2) 

The first operator defines the displacement transformation in x: 

t’ = x + a, y’ = y, u’ = ZL, v’ = u, P’ = P, 8’ = e 

Here primes denote the new variables, and a is an arbitrary parameter. Two other 
operatora similarily define displacement transformatione in y and p. The fourth operator is 
equivalent to transformation 

2’ = 2, Y’ = Yt U’ = 2.6, v’ = v, P’ = P + aya, e’=eSa 
Finally, the fifth operator defines the stretching transformation 

If the invariaut groap aolntion ie subjected to a transformations from the basic group, 
a solution of system (1.11 is again obtained. It is therefore necessary to sepaiate the 
essentially different solationa, i.e. those which cannot be converted one into another by 
any of the basic greap transformations (21. For the construction of eeaentially different 
solutions it ie necessary to know the optimal system of mingle-parameter subgroape. Simple 
calculations show that aach a system is generated by five operators 
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xx, ax, + x3, ax, i- x4, ax, -f- x, + BX,, x.6 (1.3) 
We shall denote by Hi the subgroup generated by operator Xi. 

2. We shall consider the resulting solutions. The technique of deriving these was 
described in [z] and consists of the following. The invariants of subgroup Hi are detcmhed 
8s a set of linearly independent solutions of Eq. Xi/ s 0. Let there be k, ]r, Ia, ..,, IA 
of such invariants. A part of the invariants is than selected as independent variables, the 
rauaining being considered to be functions of the former and are sabstituted into Eqs. 
(1.1). Integration of equations thus derived yields the required soIution. Constants of 
integration arising in the process of integration wiI1 be denoted by si, v., @i (i D O.f, po. 

Dae to lack of space we shall write down expressions for u, v and B only. 

2.1. Subgroup Hi. The InvarIants areJr = u, J, = 21, J, = p, J, = 6, J, = y; 
We look for a solution in the form u = u (y), u = v (y), 8 = T (y), p = p (g). Aftar 
substitution into (1.1) we obtain from the lest equation w = u. = const, and the ranaining 
take the form: 

s,U’ = U”, P’ = IT, q,T’ = oT” (2.i), 

We shall first consider the case of ue = 0. After integration we obtain (compare with 

[31) 

u=uo’y -I l&r, v=o, 0 = f&V+ e, (2.2) 

Solution (2.2) defines a Cotttte flow between two moving pInnes, when the temperature 
of these are different [b]. 

If vaf them 

& = t+e”~~ + %, v = %?, 0 = eoema, + e, (2.3) 

where m = s&r, will be the solodon of (2.1). This solution defines the convection tbroagb 
two psroos walls with a gas being fed through one wall and socked away through the other, 
and the velocity vector at each of the walls havfng different angles of inclination [51. 

2.2. Subgroup HI. We look for a solution in the form u = U (y), v = v (Y), 
8 I 7’ (y). p = ar + P(y). As in the previoos case it again folIowe from the last sqas- 
tion that u = va. The remaining eqnations coincide with (2.11, however the term -U appears 
in the right-hand side of the first of these. The solution for ve = 0 is 

u = Va a$ + uoy + q, v = 0, e = Boy + e, (2.4X 

This s&&on is a generalization of the Poisouille flow [4] generated betwean two 
heated planes by the action of a constant pressnre gradient. 

Let now uo # 0. Integration of equations yields 

This solution may be interpreted as a flow between poroas walls. 

2.3. Subgroup H,. We look for a solution in the form: 

84 = u (Y), v = V(y), 0 = Bz + T (Y), P=vw+PoI) 

and after substitution Into (1.1). we arrive at Eqs. 

VU’ = U” - xpy. VV’ = Y” - P’ -+ AT, up + VT’= tsT”, V’ = 0 (2.6 

The first case, with w = 0, yields solution 



Erect solutions of certain convection problems 491 

The derived solution defines, e.g., a flow inside of a flat channel along which is 
maintained a constant temperature gradient 6 (compare with [6] ). 

The solution for v f 0 is also written in elementary functions. 

2.4. Sub gro a p H,. Solutions which obtain in this subgroup depend on two para- 
meters CL and /3 which may vanish. There are therefore four discernible cases. 

2.4.1. Let initially u =/!? = 0. A solution is to be sought in the form: 

tL= U(x), u= V(z); e= F(t), p=P(z) 

The system of Eqs. (1.1) takes the form 

lJU’ = U” - P’, UV’ = V” + AT, UT’ = at”, U’ = 0 (2.8) 

It follows from the last equation that u = uu. When uo = 0 integration of (2.8) yields 

(2.9) 
This solution defines, e.g., a flow in a vertical slot with different wall temperatures 

[7]. If however uq + 0, then 

u = ug, 8 = eOem + e1 (m = UO / a) 

v= vleUor- 
heoo= mx he1 

uoyl-qe .+-ip+ uoz e’+ uo (2.10) 

In order to interpret this solution we shall consider the following problem. Let there 
be at x = 0 a porous wall at temperature o. through which air is drawn off at the rate uo, 
and let in the right-hand half-plane at an infinitely great distance from this wall the air 
temperature be zero. The boundary conditions will consequently be 

u = Us, u = 0, 8 = 8, 
u = ug, uao, e=o ;; y”, (uo<o) 

Pressure is throughout constant and equal po. With these boundary conditions we obtain 
from (2. IO) 

v = &)a (1 - 0) (GW - emx), e = OOemx (2.11) 

The streamlines are shown on Fig. 1. 
2.4.2. The case of p = 0, CL+ 0 was investigated in [8]. 
2.4.3. 6 f 0, u = 0. We look for a solution in the form: 

u= U(x), u= V(5), @=BY+ T(r), p = ‘lJ+y’L t- P (z) 

After substitution into (1.1) we obtain system 

UU’ = U” - P’, UV’ = V” + AT, UT’ + fit’= oT”, L” zz 0 . (2.12) 

From the last equation we have u = IL,,, and from the first 
P = po. System (2.12) is equivalent to a single fourth order 
eqnation for V 

V’V V’+$++O (2.13) 

If V has been determined, then T is found from the second 
of Eqs. (2.12) 

We shall first consider the case of a,, = 0, @ > 0. The 
characteristic equation corresponding to (2.13) is of the form 

Ir’=_& (o* = hfi / a) (2.14) Fig. 1 

The roots of Eq. (2.141 



V.L. Katkov 

k1,s = lr(f f i) 

ks,r = -_Ir (1 f 0, (P = ‘la ?2 I @ I) 

In order to interpret thie solution we shall consider the foIlowing problem. Let there 
he at I: = 0 a vsrtfcal wall the temperature of which linearly increases wftb increasing y, 
and let the gas be stationary at an infinitely great dfatance from this wall, i.e. 

u=v=o, e=py+e#J for x=0 

u= u=o, 0 = BY for 
(B > 0) 

X-PO3 

Pressure is throngbout conetant. A solution which satisfies these conditions is 

u = 0, 
No 

u=,p e’-‘u: sinPx, 0=@j+8,e-‘*xcospx (2.15) 

The whole flow (Fig. 2) has been split 
into a series of strips L D+ n/p wide with 
the dfrection of flow reversed when passing 
from one strip to another. The total gas 
flow through the cross aection is 

We turn now to the case of u = 0, p < 0. 
The vertical temperatare gradient is now 

negative. We denote A&&v by -a’; V may be written in the form: 

V z ct $5 + &-“x + Cs sin px + Ce eos pz @=vi-al 

Two problems may be considered here (compare with [9]). The ffrat correeponds to 
conditions 

ll=L=o, 6 = BY for x = 0, u = v= 0, 6 = By for x=L 

Parameter L, the slot width, ia unknown. The solution is of the fom;l 

The slot width L = kn/p, k = 1, 2, .., Magaituds ua dsfines the maximum value of 
velocity. 

The second problem may define a flow in the vicinity of a ‘Contact discontinuity’. 
The boundary conditions are as follows: 

u = 0, v = vg, 6 = - 
li,% 
~+py for x=0 

u = 0, v=o, 6=@y for 5 + 00 

With these boundary conditions the solution is 
of the km (Fig. 3) 

uzo, Y=voe-~*, e=py -9 $'LY 

(2.17) 
When au C 0 then the solution may be written 

Fig. 3 in the explicit form, but the formulas woafd be 
rather oumbersomc. 

2.4.4. The case of ti # 0, B-# 0. We look for a solution in the form: 
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u= U(E)* u= V(E), e=fiy+ T(E) 

p = ‘A VW + p (5). (f = 5 - ay) 

The snbstitntion of these expressions into (1-l) yields from the continuity equation 
the first integral 

U=aV+uO (2.18) 

Taking this integral into account we rewrite the remaining eqnatione as follows 

auOV’ = - P’ + a (1 + a%)V”, uOV’ = aP’ + (1 + a*)V‘ + hT 

u,,T’ f flV = (J (1 + aa) T” (2.19) 

If constaat so = 0, then system (2.19) is reduced to the following simple equation for 
the temperature 

(2 20) 

Velocity is determine from the last equation of system (2.19). Solution (2.20) for p < 0 
was analyzed by Prandtl [lo] in connection with hia investigation of convection above an 
inclined plane. 

2.5. Sn b gr oa p Hs yields the only one self-similar sokttion. It is convenient to 
change to polar coordinates 

2 = r COS cp, y = r sin q, u = U co3 ‘p - V sin rp, v = U sin cp + V 05s tp 

Here U and V are the velocity vector radial and tangential components. A solution 
is sought in the form 

U=&‘p), V=+(q), p- --&P((P)~ @= &w) (2.21) 

From the continuity eqaation expressedin polar coordinates follows that @ = 4. If 
ue # 0, then there will exist a stream of gas passing through the half-line 4 = con&. To 
simplify computations we shall assmne in the following that us = 0. It is readily demonatr- 
able that in this case the streamlines will correspond to half-lines 4 = coast. 

Eqs. (1.1) are expressed in polar coordinstes, and solution (2.21) is substituted into 
these. After some simple computations we obtain system 

F”+Fa+ZP+hTsincp=O, T”+9T= - 30-l FT, P’ = 2F’ + hT COF 1’ (2.22) 

We shall consider the following problem. A point heat source for sink) with ontpat Q 
is specified at the vertex of a plane angle the side walls of which are st different tamper- 
atures. The flow inside of this angle is to be determined. Therefore system (2.22) is to be 
complemented by the following boundary conditions 

F=O, T=0, for cp = a, (2.23) 

% aa 

F=O, T=0r, 
s 

rU dcp= 
s 

Fdcp=Q, for cp=ar 
01 *I. 

Here Q is the ffow rate of gas. The problem thus stated may be interpreted in several 
ways. 

With a, L 0, ur = n and Q > 0 we bava the problem of a barning gas jet having and 
infinitely high temperature at its sosree. When at - - ?&, c+= 3f2n and Q > 0, we obtain 
an infinitely narrow slot (needle) instead ,of a plaae aagle from which flows a gas st either 
positive, or negative temperature. 

We shall note the following fact. For h = 0 Eqs. (2.22) with bonndary conditions (2.23) 
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define the Hamel eolntion for a diffuser 
[4], when itn walls are at different temper- 
aturea. As is known, a eonrce flow exists 
in this case only when cone angles are 
mnall, while in the case of a mink a solo- 
tion does alwayo exist. It seems that a 
similar conclnaion applies to problem 
(2.22), (2.23), however it had not been 
possible to obtain a proof of this state- 
ment. 

System (2.22) with boundary condi- 
tfons (2.23) wan solved namerfcally for 
the following parameter valuee: 

Fig. 4 

a1 = 0, ap = rc, 8,=8,=0,01, k=o=l, Q=-8.88. 

Compatations were carried out in accordance with the method described in ill], the 
resulta are ahown on Fig. 4. At the right-hand side of this diagram is shown the angular 
diatribotion of radial velocity F; diatribation of temperatare T in shown in the upper part 
of the left-hand Bide, and the streamlinea appear in the lower part of the left-hand side of 
the diagram. Figures indicate the rate of gas flow through the crone-section. In order to 
calcalate the heat flax throngh the wall it is necessary to have the value of T ‘(0) which 
in the adduced compatatfons was foand to be 12’ ‘(0) 1 = 0.113. 

As previoosly noted, (2.22) defines the Hams1 aolation when X = 0. Wenote that in this 
case the tsmperatzre may be specified by an arbitrary power law 8 - rm T,(V). 

Eqo. (1.1) are reduced to a system as follows: 

F” + F’ + 2P = 0, T” f m’T = mGFT, P = 2F + p,, (2.24) 

where p, ia up arbitrary constant. For m - 0 the temperature will be a linear function of 4, 
while F ia implicitly expressed in terma of r$ by means of aquadrature. 

The author III gratefzl to G.Z. Gemhani and E.M. Zhakhovitclkfi for dhxmming this 
paper and for providing information an to the bibliography on known precise aolrrtions. 
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