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Invariant group solutions of certain problems defining convective motions are indicated.
A part of solutions of this type had been previously obtained by other methods.

1. Plane motions of an incompressible viscous fluid resulting from a nonuniform
heating of boundaries are conaidered. In a Cartesian system of coordinates such motions
are defined by the system of Eqs [1]:

Ui, 4 Py = Ugy + Uyy — Py
vy + voy = vy, + v y — py + A8 1.4y
ub, -+ vey = 0 (0, + ny), Uy + vy, =0

Here u and v are the velocity components along the-x-, and y-axis, p is the pressure,
6 the temperature (or more accurately, the divergence of these from certain standard
values), A is the Grasshoff number, and o the Prandt] number.

The system of Eqs. (1.1) allows for a gronp of transformations to be carried out for
the determination of which it is sufficient to know the appropriate basis operators [2]

8 a d 8 a
D=7z, D=5y, Le=g5, L=l +5
a d 8 d a a

Ko=7 gtV 3y —¥ou P90 W5 — NG (.2

The first operator defines the displacement transformation in x:
z'mx—J‘—a, ¥y =y, u=u, v =y, p =p, 9 =8

Here primes denote the new variables, and a is an arbitrary parameter, Two other
operators similarily define displacement transformations in y and p. The fourth operator is
equivalent to transformation

$’=.2, ’3/'“':3:’: u,=u7 UI:U, P':P'f‘}"ya, 9'=9+a
Finally, the fifth operator defines the stretching transformation

- f a2 P8
xwaxsy—ays“—ay?’”’asp”_azae-"’“3

If the invariant group solution is subjected to a transformations from the basic group,
a solution of system {1.1) is again obtained. It is therefore necessary to separate the
essentially different solutions, i.e. those which cannot be converted one into another by
any of the basic group transformations [2]. For the construction of essentially different

solutions it is necessary to know the optimal system of single-parameter subgroups. Simple
calculations show that snch a system is generated by five operators
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Xy, aXy -k Xa oX, 4+ Xy, aX, -+ X, -+ BX,, X, (1.3)
We shall denote by H,- the subgroup generated by operator X,—.

2. We shall consider the resulting solutions. The technique of deriving these was
described in [2] and consists of the following. The invariants of subgroup H; are determined
as a set of linearly independent solutions of Eq. X;J =0, Let there be &, /,, /,, ..., Tk
of such invariants. A part of the invariants is then ‘selected as independent variables, the
remaining being considered to be functions of the former and are substituted into Eqs.
{1.1). Integration of equations thus derived yields the required solution. Constants of
integration arising in the process of integration will be denoted by u;, v;, §; (i = 0.1, pe.

Due to lack of space we shall write down expressions for u, v and b only.

2.1.Subgroup H,. The invarlants are J, = u, J, = v, Jy; = p, J, = 6, Jy = y;
We look fora solution Inthe form u = U (y), v=V(y), 6= T(y), p= P (y). Alter
substitation Into (1.1} we obtain from the last equation v = v, = const, and the remsining
take the form:

l'oU’ . Ull’ Pl — KT, voTI — GT” (2.1).
[ We shall first consider the case of vy = 0. After integration we obtain (compare with
3])
u=udy -+ uy, v=0, 0=~0py+6 2.2)
Solution (2.2) defines a Coutte flow between two moving planes, when the temperature

of these are different [4].
1f vg ¥k then

u=1uge’ +u, v=1uvy, 06=0,™ 486 (2.3)

where m = v/, will be the solution of (2.1). This solation defines the convection through
two porous walls with a gas being fed through one wall and sucked away through the other,
and the velocity vector at each of the walls having different angles of inclination [sl.

2.2. Subgroup H,.We look for a solution in the form u = U (y), v= V (y),
@ =T (y). p=ax- P(y). As in the previous case it again follows from the last equa-
tion that v = v,. The remaining equations coincide with (2.1), however the term — @ appears
in the right-hand side of the first of these. The solution for vy =0 is

u =Y, ay? + ugy + u, v=20, 68=28y+6 (2.4)

This solution is a generalization of the Poisenille flow [4] generated between two
heated planes by the action of a constant pressure gradient.
Let now v, % 0, Integration of equations yields

o i
u=uoe”""—--%-<y+-z;o—)+ul, v==10, 0 =040, m= —?‘* (2.5)

This solution may be interpreted as a flow between porous walls,

2.3. Subgroup H,. We look for a solution in the form:
u=U(),v=V({),0=0z+T(@), p=>Aay+ P
and after subsatitation into (1.1), we arrive at Eqs.
VU = U" — Ay, VV' = V" — P’ -+ AT, UB+ VIM=o0T", V' =0 (2.6
The first case, with v = 0, yields solution

u = YAy + vy + e=sz+%-(a%y5+ TOLZ o) oyte @D
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The derived solution defines, e.g., a flow inside of a flat channel along which is
maintained a constant temperature gradient 3 (compare with [6]).
The solution for v # 0 is also written in elementary functions.

2.4, Subgroup H,. Solutions which obtain in this subgroup depend on two para-
meters a and 3 which may vanish. There are therefore four discemible cases.
2.4.1. Let initially a =8 = 0. A solution is to be sought in the form:
v=U(@), v=V@E); 0=T@, p=~P()
The system of Egs. (1.1) takes the form
vu'=y"— P, UV =V +AT, UI'=0T", U =0 (2.8)
It follows from the last equation that u = us. When ue = 0 integration of (2.8) yields
u=0, v=—A (Y002 + 30,2 + voz + v;, 8= 0,z + 6, (2.9)
This solution defines, e.g., a flow in a vertical slot with different wall temperatures
[7]. If however uo £ 0, then
u=1u, O0=0™ 40, (m=uyy/o0)
ABgo? A8 AD,
v=vle"ox_-u;§-(—1°?6—)emx_+-;fx+ u—o;+vo (2.10)

In order to interpret this solution we shall consider the following problem. Let there
be at x =0 a porous wall at temperature 6, through which air is drawn off at the rate u,,
and let in the right-hand half-plane at an infinitely great distance from this wall the air
temperature be zero. The boundary conditions will consequently be
u=uy v=20,0=0, far z=0 (uy < 0)

u=1uy v=0,0=0 for T — o0
Pressure is throughout constant and equal po. With these boundary conditions we obtain
from (2.10)
AQos?

v=gma g T — "), 0= 2.11)

he streamlines are shown on Fig. 1.
4.2, The case of =0, a# 0 was investigated in [8].
.4.3. B# 0, a =0, We look for a solution in the form:
u=U), v=V(), O=Pfy+T@), p=>YABy?+ P (2)
After substitution into (1.1) we obtain system
vy =0"—P, UV =V +AT, UT'+BV=c0I", U =0. (212

From the last equation we have u = uy, and from the first
P = po. System (2.12) is equivalent to a single fourth order
equation for V

2o

AELINRARRR

S

1 ug® A3
v Yy Dy L My
v ——uo(i—}-c)V =V V=0 @13

If V has been determined, then T is found from the second
of Egs. (2,12)

We shall first consider the case of uy =0, ,3 > 0. The
characteristic equation corresponding to (2.13) is of the form

B=—0 (0®=Ap/0) (2.14)

The roots of Eq. (2.14) are
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kre == p(l 1)
kpo = —p (4 10, =1, V2le)
In order to interpret this solution we shall consider the following problem. Let there

be at x = 0 a vertical wall the temperature of which linearly increases with increasing y,
and let the gas be stationary at an infinitely great distance from this wall, i.e.

u=v=0, 0=fy-+0, for =0 B> 0)

u=1v=0, 0= By for z— oo

Pressure is throughout constant, A solution which satisfies these conditions is

A
u=0, zr=—2—3% e P gsinpr, =Ry + e " cospx {2.15)

The whole flow (Fig. 2) has been split
into a series of strips L =n/y wide with
the direction of flow reversed when passing
from one strip to another. The total gas
flow through the cross section is

(o0}
A6
Q'—‘-‘Svdxxzﬁ%-
0

We tum now to the case of s =0, 8<0.
The vertical temperature gradient is now
negative. We denote AB/0 by —w*; V may be written in the form:

V==C1e"*+ Cp "¥ $ Cysinpzr + Cecospr = V]a))

Two problems may be considered here (compare with [9]). The first corresponds to
conditions

v=1=0, 0=By for 2=0, u=v=0, 0=fy for z=1L

Parameter L, the slot width, is unknown, The solution is of the form
N 2
u=190, v= pgsinpzr, O6=RBy —};—- vp sin pa (2.16)

The slot width L = kn/p, k=1, 2, ... Magnitude v, defines the maximum value of
velocity.

The second problem may define a flow in the vicinity of a ‘contact discontinuity’,
The boundary conditions are as follows:

‘5/

i

)
u=0, v="09, §=— 5~ +By for =0
u=20, v=0, 0=fy for z — oo

]
e

T With these boundary conditions the solation is
% of the form (Fig. 3)
(] 2,
u=0, v=1vee ™, §=Ry w&}%‘?‘ gk
247
When ug # O then the solation may be written
Fig. 3 in the explicit fomm, but the formulas would be

) . rather cambersome.
2.4.4. The case of & 5= 0, P = 0.We look for a solution in the form:

\
B
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u=U{), v=VE), 6=py+ T
p=1,A84* + P (3), E=1z—ay

The substitation of these expressions into (1.1) yields from the continuity equation
the first integral

U=aV+ u, (2.18)

Taking this integral into account we rewrite the remaining equations as follows

qugV'= — P a1 +af)V", uV' =aP + {1+ V" +AT
ug 7' +fv=0(t +a®) 7 2.19)

1f constant u, = 0, then system {2.19) is reduced to the following simple equation for
the temperatare

A
TV 4 E(T:;-g'a‘i)“s T=0 (2.20

Velocity is determine from the last equation of system (2.19). Solution (2.20) for 8 <0
was analyzed by Prandtl [10] in connection with his investigation of convection above an
inclined plane.

2.5. Subgroup Hs yields the only one self-similar solution, It is convenient to
change to polar coordinates

z=rcosP, y=rsinQ, u=Ucosp— Vsing, v= Usingp+ Vcosg

Here U and V are the velocity vector radial and tangential components, A solution
is sought in the form

1 1 1 1
U=7F@,V="10(), p=-"5P(©®), 0=~ T(9) (2.21)

From the continnity equation expressedin polar coordinates follows that @ = u,, If
ug # 0, then there will exist a stream of gas passing through the half-line ¢ = const. To
simplify computations we shall assume in the following that us = 0. It is readily demonstr-
able that in this case the streamlines will correspond to half-lines ¢ = const.

Egs. (1.1) are expressed in polar coordinates, and solution (2.21) is substituted into
these. After some simple computations we obtain system

F"4 P24 2P + ATsing =0, T"+ 9T = — 3671 FT, P’ = 2F' + )T cos g (2.22)

We shall consider the bllowing problem. A point heat source {or sink) with output Q
is specified at the vertex of a plane angle the side walls of which are at different temper-
atures. The flow inside of this angle is to be detemined. Therefore system (2.22) is to be
complemented by the following boundary conditions

F=0, T=2§ for p = oy (2.23)
as 'S
F=0, T =6, S rUdtp:S Fdp=Q, for g=aus
@ «

Here ( is the flow rate of gas. The problem thus stated may be interpreted in several
ways,

With a, = 0, 0y =7 and 0 > 0 we have the problem of a burning gas jet having and
infinitely high temperature at its source. When 0y = — X, Gy= 3/27 and @ > 0, we obtain
an infinitely narrow slot (needle) instead of a plane angle from which flows s gas at either
positive, or negative temperatuare.

We shell note the following fact. For A = 0 Egs. (2.22) with boundary conditions {2.23)



494 V.L. Katkov

define the Hamel solution for a diffuser

4], when its walls are at different temper

atures. As is known, a source flow exists

in this case only when cone angles are

smell, while in the case of a sink a solu-

tion does always exist. It seems that a
F similar conclusion applies to problem
(2.22), (2.23), however it had not been
possible to obtain a proof of this state-
ment.

System (2.22) with boundary condi-

tions (2.23) was solved numerically for
the following parameter values:

6, =06,=001, A=0=1, Q= — 8.88.

Computations were carried out in accordance with the method described in [11], the
results are shown on Fig. 4. At the right-hand side of this diagram is shown the angular
distribution of radial velocity F; distribution of temperature T is shown in the upper part
of the left-hand side, and the streamlines appear in the lower part of the left-hand side of
the diagram. Figures indicate the rate of gas flow through the cross-section. In order to
calculate the heat flux through the wall it is necessary to have the value of T “(0) which
inthe adduced computations was found to be |T “(0)| =0.113.

As previously noted, (2.22) defines the Hamel solution when A = 0. Wenote that in this
case the temperature may be specified by an arbitrary power law § = /™ T (9).

Eqgs. (1.1) are reduced to a system as follows:

Fr+ F24 2P =0, 7" 4 mdT = mo™FT, P = 2F + p, (2.24)

where p, ia an atbitrary constant. For m = 0 the temperature will be a linear function of ¢,
while F is implicitly expressed in terms of ¢ by means of a-quadrature.

The author is grateful to G.Z. Gershuni and E.M. Zhukhovitskii for discussing this
paper and for providing information as to the bibliography on known precise solutions.
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